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Realizations of the creation and annihilation operators for some important anharmonic
potentials, such as the Morse potential, the modified P¨oschl–Teller potential (MPT),
the pseudoharmonic oscillator, and infinitely deep square-well potential, are presented
by a factorization method. It is shown that the operators for the Morse potential and
the MPT potential satisfy the commutation relations of an SU(2) algebra, but those of
the pseudoharmonic oscillator and the infinitely deep square-well potential constitute
an SU(1, 1) algebra. The matrix elements of some related operators are analytically
obtained. The harmonic limits of the SU(2) operators for the Morse and MPT potentials
are studied as the Weyl algebra.
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1. INTRODUCTION

During the past several decades, the algebraic method has been applied to
a wide variety of fields in both physics and chemistry. Systems displaying a dy-
namical symmetry can be solved with algebraic techniques (Arima and Iachello,
1974; Frank and Van Isacker, 1994; Iachello and Levine, 1995). In particular, the
Morse (Morse, 1929) and P¨oschl–Teller (PT) potentials [P¨oschl and Teller, 1933]
represent two of the most studied anharmonic systems where these techniques
have been used. Both of them are closely related with SO(2, 1) and SU(2) groups
(Alhassidet al., 1983; Berrondo and Palma, 1980; Cooper, 1993; Englefield and
Quesne, 1991; Frank and Wolf, 1984; Wu and Alhassid, 1990). The latter has been
used to describe the vibrational excitations of molecular systems, while the for-
mer is associated to the potential group approach. The relation between the SU(2)
group and the Morse and PT systems can be directly established by means of a co-
ordinate transformation applied to the radial equation of a 2D harmonic oscillator.
Because of its importance in the field of the molecular physics (Child and Halonen,
1984; Jensen, 2000; Nieto and Simmons, 1979), the other different approaches to
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study the Morse potential such as the supersymmetry transformation (Benedict
and Molnar, 1999), the time-dependent generalizations (Bessis and Bessis, 1994;
Kondo and Truax, 1988), the coherent states (Gerry, 1986; Kais and Levine, 1990)
as well as the path integration method (Berceanu and Gheorghe, 1987) have also
been carried out. The PT potential has been applied in the framework of the SU(2)
vibron model, where it is associated to the vibrational excitations of the molec-
ular bending modes (Iachello and Oss, 1993). In addition, the pseudoharmonic
oscillator, as another important molecular potential, has couched for a while and
is recognized gradually (Ballhausen, 1998; B¨uyükkilic et al., 1992; Goldmenet
al., 1960; Popov, 2001). The aim of this work was to establish ladder operators
for the respective anharmonic potentials with the factorization method (Infeld and
Hull, 1951) and then construct their dynamic groups. It is shown that the opera-
tors for the Morse and modified P¨oschl–Teller (MPT) potentials satisfy the SU(2)
group, but the SU(1, 1) for the pseudoharmonic potential and the infinitely deep
square-well potential.

This paper is organized as follows: In Section 2, we establish the ladder oper-
ators directly from their eigenfunctions and then constitute their suitable algebras.
The matrix elements of the related operators are analytically obtained from the lad-
der operators. Section 3 is devoted to showing how the harmonic limits of SU(2)
algebra for the Morse and MPT potentials are contracted to the Weyl algebra.
Conclusions are given in Section 4.

2. CONSTRUCTIONS OF THE LADDER OPERATORS

In this section we address how to find the ladder operators for the wave
functions with the factorization method. We intend to find differential operators
Ô± with the following property:

Ô±ψn(ξ ) = o±ψn±1(ξ ). (1)

Specifically, we look for operators of the form

Ô± = A±(ξ )
d

dξ
+ B±(ξ ), (2)

where we stress that these operators depend only on the physical variableξ . The
physical variableξ is different with respect to the different cases, as is shown later.
We first study the case of Morse potential.

2.1. Morse Potential

Choosing the separated atoms limit as the zero of energy, the Morse potential
has the following form (Morse, 1929):

V(x) = V0(e−2βx − 2e−βx), (3)

where V0 > 0 corresponds to its depth,β is related with the range of the
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potential, andx gives the relative distance from the equilibrium position of the
atoms.

The solution of the Schr¨odinger equation associated to the Morse potential is
given by (Landau and Lifshitz, 1977)

|n〉ν ≡ ψν
n (y) = Nν

n e−
y
2 ys L2s

n (y), (4)

whereL2s
n (y) are the associated Laguerre functions, the argumenty is related with

the physical displacement coordinatex by y = ν e−βx, Nν
n is the normalization

constant

Nν
n =

√
β(ν − 2n− 1)0(n+ 1)

0(ν − n)
, (5)

and the variablesν ands are related with the potential and the energy, respectively,
through

ν =
√

8µV0

β2h2 , s=
√
−2µE

β2h2 , (6)

with the constraint condition 2s= ν − 2n− 1, whereµ is the reduced mass of the
molecule.

Let us seek the ladder operators for this system. We start by establishing the
action of the differential operatorddy on the Morse functions (4)

d

dy
|n〉ν =

[
−1

2
+ s

y

]
|n〉ν + Nν

n e−
y
2 ys d

dy
L2s

n (y). (7)

One possible relation for the derivative of the associated Laguerre functions is
given by (Gradshteyn and Ryzhik, 1994)

d

dy
Lαn(y) = − 1

(α + 1)

[
yLα+2

n−1(y)+ nLαn(y)
]
. (8)

Substitution of this expression into (7) allows us to obtain the following relation
between the Morse functions belonging to the same potential[

d

dy
(2s+ 1)−

(
1

y
s− 1

2

)
(2s+ 1)+ n

]
|n〉ν = − Nν

n

Nν
n−1

|n− 1〉ν , (9)

from which we can define the operator

K̂− = −
[

d

dy
(2s+ 1)− 1

y
s(2s+ 1)+ ν

2

]√
s+ 1

s
(10)

with the following effect over the wave functions

K̂−|n〉ν = k−|n− 1〉ν =
√

n(ν − n)|n− 1〉ν . (11)
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As we can see, this operator annihilates the ground state|0〉ν , as expected
from a step-down operator. The variables in Eq. (10) is understood as a diagonal
operator depending onn, according to 2s= ν− 2n− 1. Also note that the order
of the different terms in (10) is important, as these operators do not commute.

We now proceed to find the corresponding creation operator. We first need
to obtain a relation betweenddy Lαn(y) and Lα−2

n+1(y), since this implies a relation
between d

dy|n〉ν and the Morse function|n− 1〉ν . To this end we start with the
relation

y
d

dy
Lαn(y) = nLαn(y)− (n+ α)Lαn−1(y), (12)

which, when taking into account that (Gradshteynet al., 1994)

(n+ 1)Lαn+1(y)− (2n+ α + 1− y)Lαn(y)+ (n+ α)Lαn−1(y) = 0 (13)

can be transformed into

y
d

dy
Lαn(y) = (−n− α − 1+ y)Lαn(y)+ (n+ 1)Lαn+1(y). (14)

On the other hand, the relation

Lα−1
n (y) = Lαn(y)− Lαn−1(y), (15)

together with Eq. (13) allows to set up the result

(α − 1)

(n+ α)
Lαn+1(y) =

[
(α + x − 1)

(α + n)

]
Lαn(y)+ Lα−2

n+1(y), (16)

which in turn can be substituted into Eq. (14) to obtain

(α − 1)
d

dy
Lαn(y) =

[
(α + n)− α(α − 1)

y

]
Lαn(y)+ (n+ 1)(n+ α)

y
Lα−2

n+1(y).

(17)
Finally, when this equation is substituted into (7), we obtain

d

dy
|n〉ν =

[
−1

2
− s

y
+ (2s+ n)

(2s− 1)

]
|n〉ν + Nν

n

Nν
n+1

(n+ 1)(n+ 2s)

(2s− 1)
|n+ 1〉ν , (18)

which allows to define the creation operator as

K̂+ =
[

d

dy
(2s− 1)+ 1

y
s(2s− 1)− ν

2

]√
s− 1

s
(19)

satisfying the equation

K̂+|n〉ν = k+|n+ 1〉ν =
√

(n+ 1)(ν − n− 1)|n+ 1〉ν . (20)

SinceK̂+ is a raising operator, it is expected to annihilate the last bounded state.
Indeed, for such a states= 1 and the square root in (19) makes the operator vanish.
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We now study the algebra related with operatorsK̂+ and K̂−. On the basis
of the results (11) and (20) we can calculate the commutator [K̂+, K̂−]:

[ K̂+, K̂−]|n〉ν = 2k0|n〉v, (21)

where we introduce the eigenvalue

k0 = n− ν − 1

2
. (22)

We can thus define the operator

K̂ 0 = n̂− ν − 1

2
. (23)

Thus the operatorŝK± andK̂ 0 satisfy the commutation relations

[ K̂+, K̂−] = 2K̂ 0, [K̂ 0, K̂−] = −K̂−, [K̂ 0, K̂+] = K̂+, (24)

which correspond to the SU(2) group for the Morse potential. The Casimir operator
is

Ĉ|n〉ν =
[

K̂ 2
0+

1

2
(K̂+ K̂− + K̂− K̂+)

]
|n〉ν = j ( j + 1)|n〉ν , (25)

where j , the label of the irreducible representations of SU(2), is given by

j = ν − 1

2
= N

2
, (26)

where we have used the definitionN= ν− 1.
From the commutation relations (24) we know thatK̂ 0 is the projection of

the angular momentumm, and consequently

n− ν − 1

2
= m. (27)

Therefore the ground state corresponds tom= − j , while the maximum number
of statesnmax= (ν − 3)/2 and consequentlymmax | nmax= −1. The Morse wave
functions are then associated to one branch (in this case tom≤ −1) of the SU(2)
representations, as expected in Frank and Van Isacker (1994). Finally, we should
notice that from the SU(2) algebra the Hamiltonian acquires the simple form

Ĥ = hω

ν
K̂ 2

0, (28)

where

ω = hβ2ν

2µ
. (29)

For the wave functions

|n〉ν = N ν
n K̂ n
+|0〉ν , (30)
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where the normalization constant is obtained through the commutation relations
(24), and turns out to be

N ν
n =

√
(ν − n− 1)!

n!(ν − 1)!
. (31)

The following expressions from the operatorsK̂±,0 can be obtained as

d

dy
= K̂+

[
1

2(2s− 1)

√
s

s− 1

]
− K̂−

[
1

2(2s+ 1)

√
s

s+ 1

]
+ ν

2(2s+ 1)(2s− 1)
(32)

and

1

y
= K̂+

[
1

2(2s− 1)

√
s

s− 1

]
+ K̂−

[
1

2(2s+ 1)

√
s

s+ 1

]
+ ν

2(2s+ 1)(2s− 1)
. (33)

The matrix elements of these two functions can be analytically obtained in terms
of Eqs. (11) and (20) as

〈
m

∣∣∣∣1y
∣∣∣∣ n〉 = 1

(ν − 2n− 2)

√
(n+ 1)(ν − n− 1)

(ν − 2n− 1)(ν − 2n− 3)
δm,n+1

+ 1

(ν − 2n)

√
n(ν − n)

(ν − 2n− 1)(ν − 2n+ 1)
δm,n−1

+ ν

(ν − 2n− 2)(ν − 2n)
δm,n (34)

〈
m

∣∣∣∣ d

dy

∣∣∣∣ n〉 = 1

2(ν − 2n− 2)

√
(n+ 1)(ν − n− 1)(ν − 2n− 1)

(ν − 2n− 3)
δm,n+1

− 1

2(ν − 2n)

√
n(ν − n)(ν − 2n− 1)

(ν − 2n+ 1)
δm,n−1

+ ν

2(ν − 2n)(ν − 2n− 2)
δm,n (35)
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2.2. MPT Potential

We start by presenting the eigenfunctions for the MPT problem (Landau and
Lifshitz, 1977). The MPT potential as described in Fl¨ugge (1971) can be written
as

V(x) = − D

cosh2(αx)
, (36)

whereD is the depth of the well andα is related with the range of the potential,
while x gives the relative distance from the equilibrium position. The Schr¨odinger
equation associated to this potential is given by

d2

dx2
92

n(x)+ 2µ

h2

(
E + D

cosh2(αx)

)
9q

n (x) = 0, (37)

whereµ is the reduced mass of the molecule andq is related with the depth of the
potential as is shown later. We now introduce the following variables in accordance
with Landau and Lifshitz (1977),

ε =
√
−2µE

α2h2 , q(q + 1)= 2µD

α2h2 , q = 1

2
(−1+ 2k), (38)

with

k =
√

1

4
+ 2µD

α2h2 , ν = 2k = 2q + 1, (39)

whereν has been introduced because of its relevance for the identification of the
ladder operators with the SU(2) algebra (as shown in the next section). In terms
of the variableu = tanh(αx), the solutions of Eq. (37) are given by

|n〉q ≡ 9q
n (u) = (1− u2)ε/2F

[
ε − q, ε + q + 1, ε + 1;

1

2
(1− u)

]
. (40)

where F [ε − q, ε + q + 1, ε + 1; 1
2(1− u)] are hypergeometric polynomials of

degreen with the constraintε − q = −n, wheren = 0, 1, 2,. . . , for |n〉q to remain
finite for u= − 1. The eigenvalue can be determined by the conditionq − ε = n
and expressed as

En = −α
2h2

2µ
(q − n)2, (41)

where ε = q − n > 0. The number of bound states is determined by the dis-
sociation limit ε = q − n = 0. The normalization constant, however, was not
given in Eq. (40) and must be determined. As we know, the relation between the
Gegenbauer polynomials and the hypergeometric functions (Wang and Guo, 1989)
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can be written as

Cλ
n (x) = 0(2λ+ n)

n!0(2λ)
F

[
−n, 2λ+ n,

1

2
+ λ;

1− x

2

]
. (42)

Substitution of this expression into Eq. (40) allows to write the following solutions

|n〉q = Nq
n (1− u2)

ε
2 C

q+ 1
2−n

n (u), (43)

whereNq
n is the normalization constant to be determined. To achieve this task we

shall consider the following expression (Gradshteyn and Ryzhik, 1994)∫ 1

−1
(1− x)ν−3/2(1+ x)ν−

1
2
[
Cν

n(x)
]2

dx = π
1
20
(
ν − 1

20
)

(2ν + n)

n!0(ν)0(2ν)

×
[
Reν >

1

2

]
, (44)

from which we find the result∫ 1

−1
(1− x2)ν−3/2(1+ x)

[
Cν

n(x)
]2

dx =
∫ 1

−1
(1− x2)ν−3/2

[
Cν

n(x)
]2

dx

+
∫ 1

−1
(1− x2)ν−3/2x

[
Cν

n(x)
]2

dx,

= π
1
20
(
ν − 1

2

)
0(2ν + n)

n!0(ν)0(2ν)
(45)

as a consequence of the odd parity of the function (1− x2)ν−3/2x[Cν
n(x)]2, whose

integral vanishes in the interval [−1, 1].
The normalization is then given by condition

〈n | n〉q =
(
Nq

n
)2

α

∫ 1

−1
(1− u2)q−n−1

[
C

q−n+ 1
2

n (u)
]2

du= 1, (46)

which leads to the normalization constant

Nq
n =

√
αn!

(
q − n− 1

2

)
!(2q − 2n)!

π
1
2 (q − n− 1)!(2q − n)!

(47)

once Eq. (45) is taken into account. We should note that for q integer the state
associated with null energy is not normalizable. In this case the last bounded state
corresponds toq − n = 1. We thus have thatnmax=q− 1= (ν− 3)/2.

We now address the problem of finding ladder operators with the factoriza-
tion method. The ladder operators can be obtained by acting of the differential
operator d

du on the MPT wave functions. Therefore, formula (Gradshteyn and
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Ryzshik, 1994)

dCλ
n (t)

dt
= 2λCλ+1

n−1(t), (48)

together with Eq. (43), allows to obtain

d

du
|n〉q = −u(q − n)

1− u2
|n〉q + 2q − 2n+ 1√

1− u2

Nq
n

Nq
n−1

|n− 1〉q, (49)

and introducing the explicit form of the normalization constant, Eq. (49) becomes

√
1− u2

(
d

du
+ u(q − n)

1− u2

)√
q − n+ 1

q − n
9q

n (u) =
√

n(2q − n+ 1)9q
n−1(u),

(50)
from which we can define the annihilation operatorP̂− as

P̂− =
√

1− u2

(
d

du
+ u(q − n)

1− u2

)√
q − n+ 1

q − n
, (51)

or in terms ofν defined in (39)

P̂− =
√

1− u2

(
d

du
+ u

1− u2
ε

)√
ε + 1

ε
, (52)

where in order to simplify the notation we have taken into account that 2ε =
ν − 2n− 1= 2q − 2n. The action of the operator (52) on the wave functions is
then given by

P̂−|n〉q = p−|n− 1〉q =
√

n(ν − n)|n− 1〉q. (53)

As we can see, this operator annihilates the ground state|0〉, as expected from a
lowering operator.

We now proceed to find the corresponding creation operatorP̂+. To this end,
we consider the formula (Talman, 1968)

2(λ− 1)(2λ− 1)xCλ
n (x) = 4λ(λ− 1)(1− x2)Cλ+1

n−1(x)

+ (2λ+ n− 1)(n+ 1)Cλ+1
n+1(x). (54)

This recurrence relation can be used together with Eq. (48) to obtain

d

du
|n〉q = u(q − n)

1− u2
|n〉q − (n+ 1)(2q − n)√

1− u2(2q − 2n− 1)

Nq
n

Nq
n+1

|n+ 1〉q. (55)
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By using the explicit form of the normalization constant (47), Eq. (49) becomes

−
√

1− u2

(
d

du
− u(q − n)

1− u2

)√
q − n− 1

q − n
|n〉 =

√
(n+ 1)(2q − n)|n+ 1〉q.

(56)

Likewise, in terms of the variableν, we can thus define the creation operatorP̂+
as

P̂+ =
√

1− u2

(
− d

du
+ u

1− u2
ε

)√
ε − 1

ε
, (57)

with the following effect on the wave functions

P̂+|n〉q = p+|n+ 1〉q =
√

(n+ 1)(ν − n− 1)|n+ 1〉q. (58)

SinceP̂+ is a raising operator it is expected to annihilate the last bounded state.
Indeed, for such stateε= 1 and the square root in (57) makes the operator vanish.

We now establish the algebra associated with the operatorsP̂±. On the basis
of Eqs. (53) and (58), we calculate the commutator [P̂−, P̂+]:

[ P̂+, P̂−]|n〉q = 2p0|n〉q, (59)

where we have introduced the eigenvalue

p0 = n− ν − 1

2
. (60)

We can thus define the operator

P̂0 = n̂− ν − 1

2
. (61)

The operatorŝP±,0 satisfy the commutation relations

[ P̂+, P̂−] = 2P̂0, [ P̂0, P̂−] = P̂−, [ P̂0, P̂+] = P̂+, (62)

which correspond to the SU(2) algebra. This result is consistent with the description
of finite discrete spectrum, in accordance with previous algebraic descriptions of
the bounded states of the PT potential (Frank and Van Isacker, 1994). The Casimir
operator

Ĉ|n〉q =
[

P̂2
0+

1

2
(P̂+ P̂− + P̂− P̂+)

]
|n〉q = j ( j + 1)|n〉q, (63)

where j , the label of the irreducible representations of the SU(2), is given by

j = ν − 1

2
= N

2
. (64)
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From the commutation relations (62), we know thatP̂0 is the projection of the
angular momentumm, and consequently

n− ν − 1

2
= m. (65)

The ground state thus corresponds tom= − j , while the maximum number of
quantanmax= (ν − 3)/2 and consequentlymmax | nmax= −1 in accordance with
the constraint conditionε=q− n= 1 for the last bounded state. The MPT wave
functions are thus associated to one branch (in this case tom≤ −1) of the SU(2)
representations, as expected. Finally we should notice that in terms of the SU(2)
algebra, the Hamiltonian acquires the simple form

Ĥ = hω

ν
P̂2

0, (66)

where

ω = hβ2ν

2µ
.

While the wave functions

|n〉q = N ν
n P̂n
+|0〉q, (67)

where the normalization constant is obtained through the commutation relations
(62), turns out to be

N ν
n =

√
(ν − n− 1)!

n!(ν − 1)!
(68)

For other calculations one can obtain the following expressions in terms of
the raising and lowering operatorŝP±

u√
1− u2

= 1

2

(
P̂−

√
1

ε(ε + 1)
+ P̂+

√
1

ε(ε − 1)

)
, (69)

√
1− u2

d

du
= 1

2

(
P̂−

√
1

(ε + 1)
− P̂+

√
1

(ε − 1)

)
, (70)

where it has to be understood that for the last bounded state (ε= 1) the raising
operator vanishes. On the other hand, we remark that the variableε is to be con-
sidered as ann-dependent operator. Using Eqs. (53) and (58) and considering the
constraint condition 2ε= ν− 2n− 1, we can thus calculate the matrix elements
of these functions as〈

n′
∣∣∣∣ u√

1− u2

∣∣∣∣ n〉
q

= 〈n′| sinh(αx)|n〉q
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=
√

n(ν − n)

(ν − 2n− 1)(ν − 2n+ 1)
δn′,n−1

+
√

(n+ 1)(ν − n− 1)

(ν − 2n− 1)(ν − 2n− 3)
δn′,n+1 (71)

〈
n′
∣∣∣∣√1− u2

d

du

∣∣∣∣ n〉
q

=
〈
n′
∣∣∣∣cosh(αx)

α

d

dx

∣∣∣∣ n〉
q

= 1

2

√
n(ν − n)(ν − 2n− 1)

(ν − 2n+ 1)
δn′,n−1

− 1

2

√
(n+ 1)(ν − n− 1)(ν − 2n− 1)

(ν − 2n− 3)
δn′,n+1 (72)

2.3. Pseudoharmonic Oscillator

Generally, this potential can be taken as (Goldmanet al., 1960),

VPH(r ) = 1

8
κr 2

0

(
r

r0
− r0

r

)2

, (73)

whereκ is the force constant and ther0 equilibrium bond length. For simplicity,
the natural unitsh=µ= κ =ω= 1 are employed throughout this paper, if not
explicitly stated otherwise, whereµ is the reduced mass andω the frequency.
Consider the Schr¨odinger equation with a potentialV(r ) that depends only on the
distancer from the origin

H9n`m(θ , ϕ, r ) =
(
−1

2
∇2+ VPH(r )

)
9n`m(θ , ϕ, r ) = E9n`m(θ , ϕ, r ). (74)

Let

9n`m(r, θ , ϕ) = r−1R`n(r )Ỳ m(θ , ϕ), (75)

whereỲ m(θ , ϕ) is the normalized spherical harmonic. Substitution of Eq. (75)
into Eq. (74) enables us to obtain the following radial Schr¨odinger equation

d2R`n(r )

2dr2
+
[

E + VPH(r )− `(`+ 1)

2r 2

]
R`n(r ) = 0, (76)

whereE denotes the energy. If we consider the contribute of effective potential is
from the combination of the centrifugal potential with the pseudoharmonic one,
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we then have

V` = 1

8
r 2

0

(
r

r0
− r0

r

)2

+ `(`+ 1)

2r 2
, (77)

which can be arranged to

V` = 1

8
r 2
β

(
r

rβ
− rβ

r

)2

+ 1

4

(
r 2
β − r 2

0

)
, (78)

where

rβ =
√

2(β2− 1/4)1/4, (79)

with

β =
√

(`+ 1/2)2+ (r 2
0/2

)2
.

The solution of the radial Schr¨odinger Eq. (76) with the effective potential (78)
can be analytically obtained as (Sage, 1984)

|n〉β = Nβ
n r β+1/2 e−r 2/4Lβn (r 2/2), (80)

with

Nβ
n =

√
n!

2β(n+ β)!
. (81)

The corresponding eigenvalue can be taken as

E = n+ 1

2
+ β

2
− r 2

0

4
. (82)

We now consider the eigenvalueE under the limit ofr0. Whenr0 is very large, the
eigenvalueE becomes

E ' n+ 1

2
+ `(`+ 1)

2r 2
0

+ 1

8r 2
0

, (83)

which corresponds to the energy levels of the harmonic oscillator and rigid rotator
except for a small constant 1/8r 2

0. However, for the smallr0, the corresponding
eigenvalueE can be taken as

E ' n+ `
2
+ 3

4
, (84)

which is in proportion to the energy levels of the isotropic 3D harmonic oscillator
with principle quantum number 2n+ ` and force constant 1/4. In the following
section we make use of the radial eigenfunctions (80) to construct the creation and
annihilation operators with the factorization method.
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Let us address how to find the ladder operators for the pseudoharmonic radial
wave functions (80). We start by establishing the action of the differential operator
d
dr on the radial wave functions (80)

d

dr
|n〉β =

[
− r

2
+ β + 1/2

r

]
|n〉β + Nβ

n r β+1/2 e−r 2/4 d

dr
Lβn (r 2/2). (85)

One possible relation for the derivative of the associated Laguerre functions is
given in (Gradshteyn and Ryzhik, 1994)

x
d

dx
Lαn(x) = nLαn(x)− (n+ α)Lαn−1(x). (86)

The substitution of this expression into (85) enables us to obtain the following
relation(

− d

dr
+ β + 1/2

r
− r

2
+ 2n

r

)
|n〉β = 2(n+ β)

r

Nβ
n

Nβ

n−1

|n− 1〉β. (87)

Making use of Eq. (81), we can define the following operator

L̂− = 1

2

[
−r

d

dr
− 1

2
r 2+

(
2n+ β + 1

2

)]
, (88)

with the following effect on the wave function

L̂−|n〉β = `−|n− 1〉β =
√

n(β + n)|n− 1〉β. (89)

As we can see, this operator annihilates the ground state|0〉β , as expected from a
step-down operator.

We now proceed to find the corresponding creation operator. Before pro-
ceeding to do so, we should make use of another relation between the associated
Laguerre functions (Gradshteyn and Ryzhik, 1994)

x
d

dx
Lαn(x) = (n+ 1)Lαn+1(x)− (n+ α + 1− x)Lαn(x). (90)

Substitution of this expression into Eq. (91) admits us to obtain[
d

dr
− β + 1/2

r
+ r

2
+ 2

r

(
n+ β + 1− r 2

2

)]
|n〉β = 2(n+ 1)

r

Nβ
n

Nβ

n+1

|n+ 1〉β.
(91)

Using Eq. (81) again, we can define the following operator

L̂+ = 1

2

[
r

d

dr
− 1

2
r 2+

(
2n+ β + 3

2

)]
, (92)

satisfying the equation

L̂+|n〉β = `+|n+ 1〉β =
√

(n+ 1)(β + n+ 1)|n+ 1〉β. (93)
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We now study the algebra associated to the operatorsL̂+ and L̂−. On the
basis of results (89) and (93) we can calculate the commutator [L̂−, L̂+]:

[L̂−, L̂+|n〉β = 2`0|n〉β , (94)

where we have introduced the eigenvalue

`0 =
(

n+ β + 1

2

)
. (95)

We can thus define the operator

L̂0 =
(

n̂+ β + 1

2

)
. (96)

The operatorŝL± andL̂0 thus satisfy the commutation relations

[L̂−, L̂+] = 2L̂0, [L̂0, L̂−] = −L̂−, [L̂0, L̂+] = L̂+ (97)

which correspond to the SU(1, 1) group for the pseudoharmonic oscillator. The
Casimir operator can be also expressed as

Ĉ|n〉β = [L̂0(L̂0− 1)− L̂+L̂−]|n〉β = [L̂0(L̂0+ 1)− L̂−L̂+]|n〉β
= J(J − 1)|n〉β (98)

with

J = β + 1

2
. (99)

Finally, we should notice that the Hamiltonian acquires the simple form

Ĥ = L̂0− r 2
0

4
. (100)

For further calculations one can obtain the following expressions in terms of the
creation and annihilation operatorsL̂± andL̂0 as

r 2 = 2[2L̂0− (L̂+ + L̂−)] (101)

and

r
d

dr
= (L̂+ − L̂−)− 1

2
. (102)

The matrix elements of these two functions can be analytically obtained in terms
of Eqs. (89) and (93) as

〈m|r 2|n〉 = 2
[
(2n+ β + 1)δm,n −

√
(n+ 1)(n+ β + 1)δm,n+1

−
√

n(n+ β)δm,n−1
]

(103)
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and〈
m

∣∣∣∣ d

dr

∣∣∣∣ n〉 = √(n+ 1)(n+ β + 1)δm,n+1−
√

n(n+ β)δm,n−1− 1

2
δm,n.

(104)

2.4. Infinitely Deep Square-Well Potential

The Hamiltonian for a single particle moving in a one-dimensional infinitely
deep square-well potential is

H = p2

2µ
+ V(x),

V(x) =
(

0 0≤ x ≤ L
∞ otherwise,

(105)

whose wavefunctions become

|n〉 ≡ ψn(x) =
√

1

π
sin(nx), En = h2

2µ
n2, n = 1, 2, 3. . .. (106)

For convenience we define the “number” operatorn̂

n̂|n〉 = n|n〉. (107)

We now address how to find the creation and annihilation operatorsŜ± from the
wave functions (106)

Ŝ±|n〉 = s±|n± 1〉. (108)

From the wavefunctions (106) we have

d

dx
ψn(x) = n

√
1

π
cos(nx). (109)

We thus expresŝS± by x, d/dx andn̂ as

Ŝ− =
[
(cosx)n̂− (sinx)

d

dx

]
n̂− 1

n̂
, Ŝ+ = (cosx)n̂+ (sinx)

d

dx
, (110)

which implies that

Ŝ−|n〉 = s−|n− 1〉 = (n− 1)|n− 1〉, Ŝ+|n〉 = s+|n+ 1〉 = n|n+ 1〉.
(111)

The commutator [̂S−, Ŝ+] can be calculated on the basis|n〉
[Ŝ−, Ŝ+]|n〉 = (2n− 1)|n〉 = 2Ŝ0|n〉, (112)
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which implies that

Ŝ0 = n̂− 1/2. (113)

At least, in the spaces spanned by|n〉 the operatorŝS+ andŜ0 satisfy the com-
mutation relations of an SU(1, 1) algebra, which is isomorphic to the SO(2, 1)
algebra

[Ŝ−, Ŝ+] = 2Ŝ0, [Ŝ0, Ŝ±] = ±Ŝ±, (114)

which is the dynamical group for the infinitely square-well potential.

3. HARMONIC LIMITS OF THE SU(2) ALGEBRA

3.1. The Case of the Morse Potential

In this section we turn our attention to the harmonic limit in which the
Morse potential approaches a harmonic oscillator potential. In this limitβ → 0
andV0→∞, but keeping the productk = 2β2V0 finite, so that the expansion of
the exponential functions in (3), leads to the harmonic limit

lim
V0→∞

VMorse= 1

2
kx2. (115)

We now proceed to analyze the contraction of the SU(2) algebra

GSU(2)= {K̂+, K̂−, K̂ 0} (116)

for this limit. We first note that according to the relation 2s= ν− 2n− 1, we have

lim
ν→∞

2s

ν
= lim

ν→∞

√
s− 1

s
= lim

ν→∞

√
s+ 1

s
= 1. (117)

If we now expand the exponential function of the variabley keeping in mind that
in the harmonic limitβ → 0, we find the approximation

y ' ν(1− βx);
1

y
' 1

ν
(1+ βx), (118)

which can be used to obtain the corresponding approximation for the derivative

d

dy
= − 1

β

1

y

d

dx
, (119)

whose harmonic limit turns out to be

lim
ν→∞

d

dy
= lim

ν→∞

[
− 1

β

1

ν
(1+ βx)

d

dx

]
= − 1

βν

d

dx
. (120)



P1: IBB

International Journal of Theoretical Physics [ijtp] pp647-ijtp-453632 October 31, 2002 22:51 Style file version May 30th, 2002

2008 Dong

We are now ready to study the harmonic limit of the operators (116), but before
doing so it is convenient to introduce the renormalization

b† = K̂+√
ν

; b = K̂−√
ν

; b0 = −2K̂ 0√
ν

, (121)

which, when considered in (10) and (19), leads to

lim
ν→∞b† =

√
νβ

2
x − 1

β
√
ν

d

dx
=
√
µω

2h
x −

√
h

2µω

d

dx
= a†; (122a)

lim
ν→∞b =

√
µω

2h
x +

√
h

2µω

d

dx
= a; (122b)

lim
ν→∞b0 = 1, (122c)

with ω given by (29). The operatorsa+ anda satisfy the bosonic commutation
relation

[a, a†] = 1; [a, a] = [a†, a†] = 0, (123)

as expected. Thus, in the harmonic limit the SU(2) algebra contracts to the Weyl
algebra, i.e.,

lim
ν→∞GSU(2)= {a†, a, 1}. (124)

Finally, in terms of the operators (121), the Morse wave functions take the simple
form

|n〉ν =
√
νn(ν − n− 1)!

n!(ν − 1)!
(b†)n|0〉ν , (125)

whose harmonic limit is given by

lim
ν→∞ |n〉ν =

1√
n!

(a†)nφ0(y), (126)

whereφ0(y) is the ground state for the harmonic oscillator.
Before finishing this section, it is interesting to note that the operatorsb̂

and b̂† can be explicitly expressed in terms of the physical coordinatex and its
corresponding momentum̂p:

b̂† =
[

eβx

ν

(
− i p̂

βh
+ s

)
(2s− 1)− ν

2

]√
s− 1

νs
, (127a)

b̂ =
[

eβx

ν

(
i p̂

βh
+ s

)
(2s+ 1)− ν

2

]√
s+ 1

νs
, (127b)



P1: IBB

International Journal of Theoretical Physics [ijtp] pp647-ijtp-453632 October 31, 2002 22:51 Style file version May 30th, 2002

Unified Method for Dynamical Groups of Some Anharmonic Potentials 2009

3.2. The Case of the MPT Potential

We now analyze the harmonic limit of the MPT potential, which is obtained
whenα→ 0 andD→∞ , but keeping the productk= 2α2D finite, so that the
expansion of the exponential functions in (36), leads to

lim
D→∞

VMPT = 1

2
kx2. (128)

In the algebraic scheme this limit must be applied to the SU(2) generators, which
are convenient to be renormalized in the following form

b̂† = P̂+√
ν

b̂ = P̂−√
ν

b̂0 = −2P̂0

ν
. (129)

We first note that according to the relation 2ε= ν− 2n− 1, we have

lim
ν→∞

√
ε + 1

ε
= lim

ν→∞

√
ε − 1

ε
= 1. (130)

On the other hand, we can make the approximation cosh(αx) ' 1 and sinh(αx) '
αx in the harmonic limitα→ 0. These results, together with (52) and (57), lead
to

lim
ν→∞ b̂† =

(
− 1√

να

d

dx
+
√
να

2
x

)
=
√
µω

2h
x −

√
h

2µω

d

dx
= â†; (131a)

lim
ν→∞ b̂ =

(
1√
να

d

dx
+
√
να

2
x

)
=
√
µω

2h
x +

√
h

2µω

d

dx
= â; (131b)

lim
ν→∞ b̂0 = 1, (131c)

with

ω = α2h

2µ
ν '

√
2Dα2

µ
, (132)

where we have made use of the relationν/2− k '
√

2µD
α2 h2 in the harmonic limit

D→∞. The operatorŝa† andâ satisfy the bosonic commutation relations

[â, â†] = 1; [â, â] = [â†, â†] = 0, (133)

as expected. Therefore the SU(2) algebra is contracted to the Weyl algebra in the
harmonic limit

lim
ν→∞GSU(2)= lim

ν→∞{b̂
†, b̂, b̂0} = {â†, â, 1}. (134)
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Finally, in terms of the operators (129), the MPT wave functions can be simply
expressed as

|n〉q =
√
νn(ν − n− 1)!

n!(ν − 1)!
(b̂†)n|0〉q, (135)

whose harmonic limit is given by

lim
ν→∞ |n〉q =

1√
n!

(â†)nφ0(u), (136)

whereφ0(u) is the ground state of the harmonic oscillator.

4. CONCLUSIONS

In this paper, we established the raising and lowering operators for important
molecular potentials, such as the Morse potential, the MPT potential, infinitely
deep square-well potential, and the pseudoharmonic potential. We derived the
realizations only in terms of the physical variable without introducing an auxiliary
variable. It is shown that the SU(2) group was the appropriate dynamical symmetry
for the bound states of the Morse and MPT potentials, but the SU(1, 1) group for
the infinitely deep square-well potential and the pseudoharmonic potential. We
used the SU(2) algebra to express the Morse and MPT wave functions in terms
of the action of the creation operatorK̂+ and P̂+ on the ground state. The matrix
elements of the different related functions were analytically obtained in terms of the
ladder operators. This method can be generalized to other functions and represents
a simple and elegant approach to obtain these matrix elements in comparison
with the traditional techniques in configuration space. The harmonic limits were
also analyzed, showing that the SU(2) algebra for the Morse and MPT potentials
contracts to the appropriate Weyl algebra in this limit.
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